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Abstract The impact of phosphorus (P) availability on root
proliferation, proton efflux, and acid phosphatase activities in
roots and leaves was investigated in two lines of common
bean (Phaseolus vulgaris): BAT 477 and CocoT. Phosphorus
was supplied as KH2PO4 at 0 and 60µmol per plant (0P and
60P, respectively). Under P shortage, the plant growth was
more restricted in CocoT than in BAT 477, shoots being
more affected than roots. The root area increased signifi-
cantly at 0P in both lines. Up to 1 week following P
shortage, the proton efflux increased in both lines despite a
higher extent in BAT 477 as compared to CocoT. Root acid
phosphatase activity was significantly higher under P
limitation in the both lines, this trend being more pronounced
in BAT 477 than in CocoT. This was also true for the leaf
acid phosphatase. Regardless of the bean line, higher values
were recorded for the old leaves as compared to the young
ones for this parameter. Interestingly, a significant correlation
between Pi content in old leaves and their acid phosphatase
activity was found in P-lacking (0P) plants of the both bean
lines, suggesting that acid phosphatase may contribute to
increase the phosphorus use efficiency in bean through the P
remobilization from the old leaves. As a whole, our results
highlight the significance of the root H+ extrusion and the
acid phosphatase activity rather than the root proliferation in
the relative tolerance of BAT 477 to severe P deficiency.
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Introduction

Common beans (Phaseolus vulgaris) are the world's most
important grain legumes for direct human consumption; they
comprise 50% of the grain legumes consumed worldwide
(Broughton et al. 2003; Graham et al. 2003). Environmental
constraints such as high soil acidity and low soil nitrogen
and P levels considerably limit bean production, in particular
in the Mediterranean and tropical zones (Graham et al.
2003). P deficiency is more critical in highly withered soils
of tropics and subtropics, as well as in calcareous/alkaline
soils of the Mediterranean basin (Hinsinger 2001). Plants are
known to involve several mechanisms to increase their P
absorption efficiency, such as the modification of soil
exploration by roots by increasing the P absorption area
(Lynch and Brown 2001). For instance, phosphorus defi-
ciency in the soil has been reported to induce various
morphological changes in plant roots, including the forma-
tion of root hairs (Bates and Lynch 2001; Gahoonia and
Nielsen 2004) and cluster roots (Johnson et al. 1996).
Adaptive traits in root architecture, such as changes in the
basal root growth angle (Liao et al. 2001) and the relative
distribution of roots in the topsoil (Lynch and Brown 2001),
have also been documented. Common bean (P. vulgaris L)
has been used as a model system for understanding the
importance of root architecture for soil resource acquisition
(Liao et al. 2001). A similarly enhanced root length
production at a low P supply has been observed in Hordeum
vulgare (Steingrobe et al. 2001). Increased root production,
without a proportional increase in living root biomass, i.e.,
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enhanced root turnover, allows greater amounts of uptake of
immobile soil resources, such as P. Fast root turnover is a
very important trait of cluster-root-producing species (Shane
and Lambers 2005). Among the various morphological and
physiological strategies to acquire sparingly soluble phos-
phorus from soil, enhanced rhizosphere acidification is of
important significance (Hinsinger et al. 2003). This acidifi-
cation capacity is phosphorus-availability-dependent.
According to (Sas et al. 2003), the excess of cation content
in plants is generally higher at 1 mmol P per cubic meter and
decreases with increasing P supply. H+ extrusion by P-
deficient plants (grown at 1 and 5 mmol P per cubic meter)
is, on average, two to threefold greater than organic acid
exudation.

Acid phosphatase (orthophosphoric-monoester phospho-
hydrolase, EC 3.1.3.2) can hydrolyse a range of organic P
compounds (Tarafdar and Claassen 2005), and these
enzymes are more abundant in the rhizosphere when plants
are P-starved (Yun and Kaeppler 2002). The production of
phosphatase is a potential way for plants to enhance P
availability, as a large proportion of soil P (up to 80%)
occurs in organic forms (Richardson et al. 2004). Coello
(Coello 2002) showed that the activity of the secreted acid
phosphatase in Arabidopsis thaliana under P-deficient
conditions increased as much as six times over P-
sufficient treated plants within the first 2 days of Pi
withdrawal. Yadav and Tarafdar (Yadav and Tarafdar
2003) reported that legumes secrete more acid phosphatase
comparatively to cereals and oil seeds under P-deficient
conditions. In chickpea, significantly higher acid phospha-
tase activity allowed the plant to mobilize more organic P in
both hydroponic and soil cultures, resulting in an improve-
ment of the utilization of organic P in maize/chickpea
intercropping (Li et al. 2004). Interestingly, acid phospha-
tase activity has been also observed in shoots, although its
role is not yet elucidated. Plaxton and Carswell (Plaxton
and Carswell 1999) hypothesized that acid phosphatase
may be involved in releasing Pi from phosphocholine, a
phophorilized component of the xylem tissues. Yet, no
correlation between the acid phosphatase activity and leaf P
status was found in bean, suggesting that acid phosphatase
may not contribute to the P remobilization in leaves (Yan et
al. 2001). Acid phosphatase activity may be also related to
the leaf developmental stage, being significantly higher in
the juvenile than in the senescent leaves (Fernandez and
Ascencio 1994). Indeed, in both maize and wheat chal-
lenged with lower P availability, acid phosphatase activity
was higher in roots than in shoots (McLachlan et al. 1987;
Yun and Kaeppler 2002).

In the present work, we address the impact of phospho-
rus deficiency on two lines of common bean (BAT 477,
CocoT). We focus on the plant growth, the root prolifera-
tion, and assess the involvement of the proton efflux and

the acid phosphatase activity in improving P uptake and P
use efficiency, respectively.

Materials and Methods

Hydroponic Experiments

Uniformly sized sterilized seeds were germinated in agar
0.9%. Five days after sowing (DAS), seedlings were carefully
transplanted into 1-l serum bottles. Roots were gently passed
through the hole of a rubber stopper on the bottle neck, and
cotton wool was fitted at the hypocotyls level to maintain the
root system suspended in the nutrient solution. The study was
conducted in a glasshouse under controlled conditions (30/
25°C day/night temperatures, 16-h photoperiod). The seed-
lings were initially cultivated in the nutrient solution (Vadez et
al. 1996) with 15 P and 2 mM urea. At 13 DAS, the plants
were separated into two lots: The first one was cultivated
with a nutrient solution completely deprived of P (0P) while
the second received 60P. Bottles were aerated with a flow of
400 ml min−1 of filtered air via a compressor and spaghetti
tube distribution system. Regular harvests were carried out
after 13, 15, 17, 19, 21, 24, 27, and 30 days of treatment.
The experiment was set up as a complete factorial with two P
levels (0 and 60µmol KH2PO4) and two bean genotypes
(BAT 477 and CocoT).

Growth and Root Area Determination

Plants were harvested and separated into roots and old and
young leaves. The sample dry weight (DW) was determined
after drying at 60°C for 3 days. The root area was determined
on freshly harvested roots using the OPTIMAS software.

Proton Efflux Measurements

To compensate the acidification of the nutrient solution during
the hydroroponic culture, the pH was measured daily. Fifty-
milliliter aliquot of nutrient solution was taken from each
1-l bottle and corrected to pH6.8, if necessary, using an
automatic titrator (Metrhom) and using a measured quantity Q
(mole) of a KOH (0.1 M) solution according to the formula:
Q=CV 10−3, with C and V representing the concentration of
the solution in molar and the volume of solution used in
milliliter, respectively. Practically, the quantity of KOH
solution added to each bottle was extrapolated from the
volume of solution that was added to the aliquot.

Acid Phosphatase Assay

Leaves and roots (0.1 g) were ground separately in a mortar
with an extraction mixture consisting of 0.1 M acetate
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buffer (1 gml−1 buffer), 6 mM ß-mercaptoethanol, 0.1 mM
phenyl methyl sulfonyl fluoride, and 6 g insoluble
polyvinylpolypyrrolidone. The homogenate was centri-
fuged at 30,000×g at 4°C for 30 min. The reaction mixture
contained 100 mM sodium acetate buffer (pH5.8), 5 mM p-
nitrophenyl phosphate, and the enzyme in a total volume of
0.5 ml. After 30-min incubation at 30°C, the reaction was
stopped by the addition of 1 ml 0.5 M NaOH. Acid
phosphatase activity was measured at 405 nm by monitor-
ing the p-nitrophenol released.

Protein Determination

Protein concentration was determined with the Coomassie
Blue G-250 method using bovine serum albumin as standard.

Pi Determination

Samples (25 mg DW of old leaves) from each plant were
digested in HNO3 0.5%. The inorganic phosphorous

released was quantified by the molybdovanadate method
at 460 nm.

Statistical Analysis

A one-way analysis of variance, using the AV1W MSU-
STAT program with orthogonal contrasts and mean com-
parison procedures, was performed to detect differences
between treatments. Mean separation procedures were
carried out using the multiple range tests with Fisher's least
significant difference (LSD; P<0.05).

Results

Plant Growth and Root Area

At 60P, shoot (Fig. 1a, b) and root (Fig. 1c, d) biomass
(DW) were higher in CocoT than in BAT 477. P shortage
restricted significantly the shoot growth in the both lines;
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Fig. 1 Effect of P nutrition on
shoot (a, b), root (c, d), and
root/shoot DW ratio (e, d) of
common bean genotypes BAT
477 and CocoT. For each
parameter, values (means of four
replicates±SD) followed by the
same letters are not significantly
different at 5% according to
Fisher's LSD test
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especially in Coco T. While root DW was not affected by
phosphorus availability in BAT 477, 0P led to a
significant decrease of this parameter (−50%) in CocoT.
The root/shoot DW ratio was higher in the 0P plants as
compared to those supplied with 60P, this tendency being,
however, more pronounced in CocoT than in BAT 477
(Fig. 1e, f).

Over the treatment period, root area was higher in the 0P
treatment than in 60P in both lines (Fig. 2). It is worth
mentioning that independently of the P supply levels, this
parameter was higher in CocoT than in BAT 477, especially
at the end of the treatment.

Proton Efflux

Regardless of the P supply level, the acidification estimated
by proton efflux per gram roots FW (Fig. 3) was higher in
BAT 477 than CocoT. During the first week of treatment
(up to 21 DAS), the plants lacking phosphorus (0P) showed
the highest values especially in BAT 477 (3.5 nmol H+ per
gram root FW) than in CocoT (2 nmole H+ per gram root

FW). Thereafter, this parameter declined strongly, being
even lower than the 60P plants at 30 DAS.

Acid Phosphatase Activity

Root acid phosphatase activity was higher under P shortage
in both lines (Fig. 4). This increase was, however, more
pronounced in BAT477 than in CocoT (respectively, 6 and
5µmol PNP per minute per milligram proteins). After
6 days of treatment, this activity decreased significantly in
two lines of bean.

Under P shortage, the acid phosphatase activity in-
creased to a higher extent in the old leaves than in the
juvenile ones in both lines (Fig. 5). In the old leaves, this
parameter was higher in BAT 477 than in CocoT
(respectively, 5 and 4µmol PNP per minute per milligram
proteins). Under optimal P supply, both old and young
leaves showed a similar acid phosphatase activity (2µmol
PNP per minute per milligram proteins) in both lines.
Irrespective of the bean line, the acid phosphatase activity
was higher in roots than in leaves in the 0P plants.
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Relationship Between the Pi Content and Acid Phosphatase
Activity in the Old Leaves

The relationship between the Pi content in old leaves
and their acid phosphatase activity provides information
about the involvement of acid phosphatase in the
remobilization of Pi in these organs. Interestingly, a
significant correlation between Pi content in the old
leaves and the acid phosphatase activity was found at 0
µmol P for both bean lines (R=0.85 and R=0.92),
respectively, for CocoT and BAT 477), but was lower
under 60µmol P (Fig. 6). The slope of the regression was
calculated as a parameter standing for the utilization of

acid phosphatase in the remobilization of inorganic
phosphorus from the old leaves toward the juvenile ones.
This parameter was higher in both lines at low P supply
(0P) and was significantly increased by P limitation,
although to a lower extent for CocoT (40%) than for
BAT 477 (55%).

Discussion

Our results show that P limitation restricted the shoot
growth in both lines of bean and that this depressive effect
was more pronounced in CocoT than in BAT 477.
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According to (Lambers et al. 2006), a low external P
availability decreases the internal P status of the plant. In
this case, P starvation responses are generally up-regulated
in the most tolerant species. P starvation responses,
depending on the species, include increased root hair
formation, root cluster initiation, and development. We
observed an increase in root proliferation in both bean lines
in response to phosphorus limitation. After 4 days of
treatment, the root area was increased but the dry matter
production remained constant. This trend may be indicative
of the capacity of bean lines to increase the root length in
order to enhance the exchange area between roots and the
medium. According to (Ahmed et al. 1987), the stability of
the root biomass could be explained by the development of
the root hairs, characterized by a low energetic cost.
Furthermore, root hairs are a fairly common root structure,
and increased root hair length and numbers are considered
to be an adaptation that enhances Pi acquisition and thereby

the plant competitive advantage when soil Pi is limiting for
growth (Bates and Lynch 2001). Our findings indicate that
the root/shoot DW ratio increased significantly in plants
lacking P despite a higher extent in CocoT. This confirms
previous results of (Zhu et al. 2005) and (Li et al. 2007) for
maize showing that P limitation increased the root/shoot
DW ratio as well the root length and number. Recently,
(Pan et al. 2008) reported that in soybean, the P-efficient
genotypes were characterized by high root-to-shoot DW
ratio, together with high root length and surface area and P
uptake, under P deficiency. Further strategies to increase
root area have been also identified in bean lines, such as
large roots with higher biomass or fine roots hairs with a
low biomass (Araujo and Teixeira 2000). In our conditions,
both bean lines (especially the sensitive one, CocoT) may
have adopted the second way. Several works suggest that
ethylene plays a major role in modulating the growth of
root hairs in response to plant P nutrition. In this way, the
increased growth of root hairs observed for plants grown at
low P availability can be mimicked in plants grown at high
Pi supply by adding an ethylene precursor to “high-P”
roots. Similarly, root hair growth can be inhibited by adding
the ethylene inhibitor 1-amino-cyclopropane-1-carboxylate
to the medium of “low-P” roots (Zhang and Li 2003). Split-
root experiments have also established that a shoot-derived
signal is required for root hairs to increase the root length;
the signal is translocated to the roots only when the shoot
senses a low P status, resulting in enhanced root hair length
even at low P status in the roots (Jungk 2001).

The present work shows that the ratio of proton efflux
per unit biomass of root FW increased under severe P
deficiency, being higher in the relative tolerant line (BAT
477) than in the sensitive one (CocoT). This result suggests
that this acidification capacity is phosphorus availability-
and genotype-dependent. In a recent work (Kouas et al.
2008), we found that in common bean grown under
symbiotic nitrogen fixation, the proton efflux by nodulated
roots was 25% to 50% higher in BAT 477 than in CocoT
under optimal to P-limiting supplies. This agrees with the
previous report of a relatively high proton efflux by BAT
477 under P limiting independently of N2 fixation (Tang et
al. 2003). The higher proton efflux in BAT 477 correlated
with its better adaptability to P limiting, suggesting an
involvement of the root acidification capacity in the
adaptation of common bean to this abiotic constraint. Sas
et al. (Sas et al. 2003) reported that H+ extrusion in P-
deficient plants were, on average, two to threefold greater
than organic acid exudation. In addition, the excess of
cation content in plants was higher at low P supply (1 mmol
P per cubic meter) but decreased with increasing P supply.
Similarly, (Neumann and Römheld 1999) documented that
phosphorus deficiency increased the proton efflux in roots
of tomato and white lupin. Recently, (Zhou et al. 2009)
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Fig. 6 The relationship between the Pi content in old leaves and acid
phosphatase activity in bean genotypes BAT 477 and CocoT under 0P
and 60P. Data are individual values of plants (four replicates per
treatment and genotype)
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showed that faba bean can release significant amounts of
proton in comparison with soybean and maize. This result
could partly explain why faba bean utilizes sparingly
soluble P more effectively than soybean and maize and is
of high significance in identifying the mechanisms behind
interspecific facilitation of P uptake by intercropped
species, especially when grown on calcareous soils. Our
data also support previous works showing that root H+-
ATPase plays an essential role for the enhanced H+ release
by plant roots under P deficiency and, therefore, is an
essential enzyme involved in the adaptation of plants to P
deficiency (Shen et al. 2006; Yan et al. 2001).

In both lines studied, P limiting increased significantly
the acid phosphatase activity in roots despite a higher extent
in BAT 477 than in CocoT. Similarly, (Xiao et al. 2006)
reported that root acid phosphatase activity was five to
tenfold higher in A. thaliana plants subjected to P limitation
as compared to the plants cultivated under optimal P
supply. These findings strengthen the assumption that acid
phosphatase in roots may be involved in the P acquisition
and in the improvement of P nutrition (Wasaki et al. 2003).
Li et al. (Li et al. 2008) also noted a higher acid
phosphatase activity in the rhizosphere of two rice
genotypes: Zhongbu 51 and Pembe. Furthermore, acid
phosphatase activity was negatively correlated to organic P
concentration in the rhizosphere of both Zhongbu 51 and
Pembe, suggesting that acid phosphatase was involved in
the mineralization of organic P in the soil. Ma et al. (Ma et
al. 2009) reported that transgenic expression of a purple
acid phosphatase gene in white clover plants increased their
abilities of utilizing organic phosphorus in response to P
deficiency. At 0P, the acid phosphatase activity was higher
in old leaves than the young ones and BAT 477 showed
higher values than CocoT. Although the induced phospha-
tase activity in plants during P deficiency has been widely
documented, the specific role of phosphatase for improving
internal efficiency of P utilization has not been clearly
established (Nanamori et al. 2004). The absence of any
relationship between acid phosphatase activity and P status
in leaves of distinct ages of common bean genotypes led
(Yan et al. 2002) to suggest that the phosphatase activity
was not related to leaf P remobilization. On the contrary,
Brachiaria plants showed a higher proportion of Pi to total
P in leaves than rice plants and also a higher acid
phosphatase activity in shoots, which could allow the
Brachiaria to use P more efficiently than rice (Nanamori
et al. 2004). Interestingly, the present work reveals a strong
correlation between Pi content in the old leaves and their
acid phosphatase activity at 0P for both lines. The slope of
the regression was calculated as a parameter standing for
the utilization of old leaves acid phosphatase in the
remobilization of Pi. This parameter was significantly
increased at low P (0P), although to a lower extent in

CocoT (40%) than in BAT 477 (55%). This may indicate
that acid phosphatase may efficiently contribute to enhance
the phosphorus use efficiency in bean through the P
remobilization from the metabolically less active sites, such
as the old leaves toward the young ones (Duff et al. 1994;
Schachtman et al. 1998).

As a whole, our results indicate that the relative better
tolerance of BAT 477 to P limitation as compared to CocoT
could be partly explained by the capacity of BAT 477 to
maintain (1) a higher root acid phosphatase and proton
efflux to preserve an adequate phosphorus nutrition despite
lacking P in the culture medium, in concomitance with (2) a
higher acid phosphatase activity in the old leaves. This
enzyme is involved in the mobilization of the phosphorus
from these organs and its allocation toward the young
leaves, which increases the P utilization efficiency.
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